On the Influence of Alloy Composition on the Additive Manufacturability of Ni-Based Superalloys

Author:

Ghoussoub Joseph N.,Tang Yuanbo T.,Dick-Cleland William J. B.,Németh André A. N.,Gong Yilun,McCartney D. Graham,Cocks Alan C. F.,Reed Roger C.

Abstract

AbstractThe susceptibility of nickel-based superalloys to processing-induced crack formation during laser powder-bed additive manufacturing is studied. Twelve different alloys—some of existing (heritage) type but also other newly-designed ones—are considered. A strong inter-dependence of alloy composition and processability is demonstrated. Stereological procedures are developed to enable the two dominant defect types found—solidification cracks and solid-state ductility dip cracks—to be distinguished and quantified. Differential scanning calorimetry, creep stress relaxation tests at 1000 °C and measurements of tensile ductility at 800 °C are used to interpret the effects of alloy composition. A model for solid-state cracking is proposed, based on an incapacity to relax the thermal stress arising from constrained differential thermal contraction; its development is supported by experimental measurements using a constrained bar cooling test. A modified solidification cracking criterion is proposed based upon solidification range but including also a contribution from the stress relaxation effect. This work provides fundamental insights into the role of composition on the additive manufacturability of these materials.

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3