Author:
Volz N.,Xue F.,Bezold A.,Zenk C. H.,Fries S. G.,Schreuer J.,Neumeier S.,Göken M.
Abstract
AbstractThe γ′ volume fraction is a key parameter in precipitation-strengthened Co- and Ni-base superalloys and mainly determines the alloys’ properties. However, systematic studies with varying γ′ volume fractions are rare and the influence on thermal expansion has not been studied in detail. Therefore, a series of six Ta-containing Co-based alloys was designed with compositions on a γ–γ′ tie-line, where the γ′ volume fraction changes systematically. During solidification, Laves (C14-type) and µ (D85-type) phases formed in alloys with high levels of W and Ta. Single-phase γ or two-phase γ/γ′ microstructures were obtained in four experimental alloys after heat treatment as designed, whereas secondary precipitates, such as χ (D019-type), Laves, and μ, existed in alloys containing high levels of γ′-forming elements. However, long-term heat treatments for 1000 hours revealed the formation of the χ phase also in the former χ-free alloys. The investigation of the thermal expansion behavior revealed a significant anomaly related to the dissolution of γ′, which can be used to determine the γ′ solvus temperature with high accuracy. Compared to thermodynamic calculations, differential scanning calorimetry (DSC) and thermal expansion analysis revealed a larger increase of the γ′ solvus temperatures and a lesser decline of the solidus temperatures when the alloy composition approached the composition of the pure γ′ phase.
Funder
Friedrich-Alexander-Universität Erlangen-Nürnberg
Publisher
Springer Science and Business Media LLC
Subject
Metals and Alloys,Mechanics of Materials,Condensed Matter Physics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献