Evolution of Non-metallic Inclusions Through Processing in Ti-V Microalloyed 316L and Al-V Microalloyed 17-4PH Stainless Steels for Hipping Applications

Author:

Balart MarÍa J.,Hao Xinjiang,Marks Samuel,West Geoff D.,Walker Marc,Davis Claire L.

Abstract

AbstractPowders produced by air-melted gas atomization (AMGA) and vacuum induction gas atomization (VIGA) from Ti-V microalloyed 316L and Al-V microalloyed 17-4PH stainless steels along with their feedstock material and Hot Isostatically Pressed (HIP’d) products have been examined. Inclusion characteristics and development through process along with changes in grain size have been characterized. The main findings are that a thin oxide film forms on the powder surface, thicker for the 316L powder than the 17-4PH powder as indicated by XPS analysis of selected powder precursors, and large inclusions (predominantly oxides) are also observed on the 316L powder. This results in a high number of inclusions, including more complex two-phase inclusions, on the prior particle boundaries in the HIP’d material. Grain growth occurs during HIPping of the 316L powders with some evidence of inclusions locally pinning boundaries. In the vacuum-melted powder, smaller Ti-rich inclusions are present which give more grain boundary pinning than in the air-melted powder where Ti was lost from the material during melting. Consideration has also been made to determine the variation of Ti and V microalloying elements and residual Cu through processing. It was found that Ti was lost during air melting but partly retained after vacuum melting leading to the presence of fine and complex Ti-containing precipitates which provided grain boundary pinning during HIPping and heat treatment. V was retained in the melt by the use of both AMGA and VIGA processes, and therefore available for precipitation during HIPping. Residual Cu was retained during both air and vacuum melting and was associated with Mn S and Mn O S inclusions overwhelmingly outweighing that of Mn O inclusions in the two HIP’d 316L samples.

Funder

University of Warwick

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

Reference76 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3