Laser Welding of Nitinol Thin Foils: Mechanical Properties and Microstructure Depending on Process Parameters

Author:

Katrakova-Krüger D.,Pegoraro L.,Salmaso L.,Hartl C.,Schulz I.,Weichert S.,Steffen R.

Abstract

Abstract Ni–Ti alloys are used as functional materials in numerous sectors such as aerospace, automotive engineering, medical technology, and consumer goods. Their properties in terms of shape memory effect and superelasticity offer a great potential for innovative smart products. However, forming and machining of these alloys into concrete products is challenging. Assembling plain structures by laser welding to complex product shapes offers an economical alternative in many cases, but can be associated with negative effects, such as reduction of strength, development of brittle intermetallic compounds, alteration of transformation temperatures, and modification of shape memory effects and superelastic behavior. Against this background, investigations on laser welding of Ni55/Ti45 foil with a thickness of 125 µm by a fiber laser were conducted. Supported by methods of design of experiments, optimal parameters were determined with respect to laser power, welding speed, focus position, and beam oscillation, and the welding results were analyzed concerning the microstructure and mechanical characteristics of the welded joints. The effect of laser beam oscillation was investigated for the first time for the welding of this alloy. Due to the very low thickness, the preparation of the foils for the microstructure characterization is quite demanding. Best results were obtained by ion milling. Fracture surfaces and the influence of the welding were also investigated.

Funder

Technische Hochschule Köln

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3