A Novel High-Strength Zn-3Ag-0.5Mg Alloy Processed by Hot Extrusion, Cold Rolling, or High-Pressure Torsion

Author:

Wątroba Maria,Bednarczyk Wiktor,Kawałko Jakub,Lech Sebastian,Wieczerzak Krzysztof,Langdon Terence G.,Bała Piotr

Abstract

AbstractA novel Zn-3Ag-0.5Mg alloy was plastically deformed using 3 processing paths: hot extrusion (HE), HE followed by cold rolling (CR) and high-pressure torsion (HPT). The processed samples consisted of the η-Zn phase, ε-Zn3Ag precipitates within the matrix, and nanometric Zn2Mg precipitates within the Zn11Mg2 phase located at the grain boundaries. Both the η-Zn phase and Mg-rich phases were enriched in Ag. Electron backscattered diffraction was used to examine the effects of grain size and texture on mechanical behavior with tensile tests performed at room temperature (RT) at different strain rates. The coarse-grained (~ 6 µm) samples after HE exhibited high strength with brittleness due to dislocation interaction with dispersed precipitates and, to some extent, with twinning activation. Significant grain refinement and processing at RT gave an increase in elongation to over 50 pct in CR and 120 pct in HPT. Ductile CR samples with an average grain size of ~ 2 µm and favorable rolling deformation texture gave a yield strength of ~ 254 MPa, a tensile strength of ~ 456 MPa, and a reasonable strain rate sensitivity. These values for the CR samples meet the mechanical requirements for biodegradable stents in cardiovascular applications.

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3