Characterization of Vacancy Defects Using TEM in Heavy-Ion-Irradiated Tungsten Foils

Author:

Sharma Prashant,Maya P. N.,Satyaprasad A.,Deshpande S. P.

Abstract

AbstractThe nature and type of defects formed due to heavy-ion irradiation in tungsten foils are analyzed using transmission electron microscopy. The recrystallized tungsten foils were irradiated by 80 MeV gold ions at room temperature for a fluence of 1.3 $$\times $$ ×  10$$^{14}$$ 14  ions/cm$$^2$$ 2 that amounts to a net displacement per atom (dpa) of 0.22. The defect structures were analyzed using bright-field and weak-beam dark field imaging at two different depths to understand the depth profile of the defects. It is found that the defect clusters formed during the irradiation, both at the near-surface and at 2 $$\mu $$ μ m depth are of vacancy type that is confirmed by the local strain analysis and supports the findings of vacancy clusters in positron lifetime measurements. The analysis also shows that the dislocation-lines were of pure edge, pure screw and mixed. The fraction of mixed dislocation is found to increase during irradiation at the expense of pure edge and screw dislocations.

Funder

Institute for Plasma Research & ITER-India, Institute for Plasma Research

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3