Rapid Solidification Microstructure and Carbide Precipitation Behavior in Electron Beam Melted High-Speed Steel

Author:

Jin J.,Gao R.,Peng H.,Guo H.,Gong S.,Chen B.

Abstract

AbstractThe solidified microstructure and carbide precipitation behavior in an S390 high-speed steel processed by electron beam melting (EBM) have been fully characterized. The as-EBM microstructure consists of discontinuous network of very fine primary carbides dispersed in auto-tempered martensite matrix together with a limited amount of retained austenite. The carbide network consists of M2C/M6C and MC carbides. Both the columnar and near-equiaxed grain structures were found in as-EBM microstructure and the presence of inter-dendritic eutectic carbides assisted in revealing the dendritic solidification nature. The top-layer microstructure observation confirmed that the columnar dendritic structured grains were located adjacent to the micro-melt pool boundary, indicating an epitaxial growth with the average growth direction parallel to the maximum thermal gradient. At the center of the micro-melt pool, the near-equiaxed grains were developed by dendritic growth parallel to the beam traveling direction. The carbide decomposition was revealed by scanning transmission electron microscopy and confirmed by transmission Kikuchi diffraction. The MC carbides (rich in V followed by W) nucleated at the interface between M2C (W, Fe, Mo, and Co in the order of significance) and the matrix and then grew from the outside inward, but their nucleation might occur from the M2C carbide itself. The thermal effect induced by the adjacent scan lines seems to trigger a solid-state phase transformation of MC → M2C + γ-Fe. The elemental migration was theoretically calculated and compared with the experimental results. The high hardness of ~ 65 HRC and good transverse rupture strength of ~ 2500 MPa in as-EBM S390 means that EBM processing can be used to fabricate highly alloyed tool steels. With the help of the post-processing heat treatment, the best Rockwell hardness of 73.1±0.2 HRC and transverse rupture strength of 3012±34 MPa can be obtained.

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3