Embrittlement Analysis of $$\sum {{{{5}\left[ {{21}0} \right]} \mathord{\left/ {\vphantom {{{5}\left[ {{21}0} \right]} {\left( {\overline{1}\overline{2}0} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {-{1}-{2}0} \right)}}}$$ FeAl Grain Boundary in Presence of Defects: An Ab Initio Study

Author:

Lehenkari Touko,Aravindh S. Assa,Cao Wei,Alatalo Matti,Huttula Marko,Komi Jukka

Abstract

AbstractIron aluminide (FeAl) inter-metallic compounds are potential candidates for structural applications at high temperatures owing to their superior corrosion resistance, high temperature oxidation, low density and inexpensive material cost. However, the presence of defects can lead to reduction in the strength and ductility of FeAl-based materials. Here we present a density functional theory (DFT) study of the effect of the presence of defects including Fe and Al vacancies as well as H dopants at the substitutional and interstitial sites at a $$\sum {{{{5}\left[ {{21}0} \right]} \mathord{\left/ {\vphantom {{{5}\left[ {{21}0} \right]} {\left( {\overline{1}\overline{2}0} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\overline{1}\overline{2}0} \right)}}}$$ 5 210 / 1 ¯ 2 ¯ 0 FeAl grain boundary focusing on the energetics. The plane wave pseudopotential code Vienna Ab initio Simulation Package (VASP) in the generalized gradient approximation (GGA) is used to carry out the computations. The formation energy calculations showed that intrinsic defects such as Fe and Al vacancies probably form at the GB, indicated by their negative formation energies. These vacancies can further form defect complexes with H impurities, indicated by lowered formation energies, compact bonds and charge gain of H atoms. Electronic structure analysis showed stronger hybridization of 1s orbitals of H with Fe and Al atoms, which leads to the stabilization of these defects resulting in degradation of material strength.

Funder

University of Oulu including Oulu University Hospital

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3