1. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. CVRP II, 246–252 (1999)
2. Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. ECCV II, 751–767 (2000)
3. Tuzel, O., Porikli, F., Meer, P.: A bayesian approach to background modeling. MVIV III, 58 (2005)
4. Tian, Y.L., Lu, M., Hampapur, A.: Robust and efficient foreground analysis for real-time video surveillance. CVPR I, 1182–1187 (2005)
5. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Computational Learning Theory, Eurocolt, pp. 23–37 (1995)