1. Lecture Notes in Artificial Intelligence,2002
2. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points to identify the clustering structure. In: Proc. of ACM SIGMOD Int. Conf. on Management of Data, Philadelpha, pp. 49–60. ACM, New York (1999)
3. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: Proc. of ACM SIGMOD Int. Conf. on Management of Data, Montreal, pp. 103–114. ACM Press, New York (1996)
4. Guha, S., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams. In: Proc. Ann. Symp. Foundations of Computer Science, pp. 359–366 (2000)
5. Ghosh, J., Strehl, A., Merugu, S.: A consensus framework for integrating distributed clusterings under limited knowledge sharing. In: Proc. NSF Workshop on Next Generation Data Mining, pp. 99–108 (2002)