Publisher
Springer Berlin Heidelberg
Reference22 articles.
1. E. R. Berlekamp, Algebraic coding theory, McGraw–Hill, New York, 1968.
2. B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, Ph.D. thesis, Innsbruck, 1965.
3. B. Buchberger, Gröbner-bases: An algorithmic method in polynomial ideal theory, Multidimensional systems theory, Reidel, Dordrecht, 1985, pp. 184–232.
4. B. Buchberger, Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal, J. Symb. Comput. 41 (2006), nos. 3–4, 475–511.
5. G. L. Feng and K. K. Tzeng, A generalized Euclidean algorithm for multisequence shift-register synthesis, IEEE Trans. on Inf. Th. 35 (1989), no. 3, 584–594.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Sparse Interpolation in Terms of Multivariate Chebyshev Polynomials;Foundations of Computational Mathematics;2021-09-09
2. Decoding up to 4 Errors in Hyperbolic-Like Abelian Codes by the Sakata Algorithm;Arithmetic of Finite Fields;2021
3. A Polynomial-Division-Based Algorithm for Computing Linear Recurrence Relations;Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation;2018-07-11
4. On the evaluation codes given by simple $$\delta $$ δ -sequences;Applicable Algebra in Engineering, Communication and Computing;2015-08-01
5. Linear Algebra for Computing Gröbner Bases of Linear Recursive Multidimensional Sequences;Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation;2015-06-24