Author:
Mora Teo,Orsini Emmanuela
Publisher
Springer Berlin Heidelberg
Reference26 articles.
1. M.-E. Alonso, E. Becker, M.-F. Roy, and T. Wörmann, Zeros, multiplicities, and idempotents for zero-dimensional systems, Proceedings of MEGA 1994, Birkhäuser, Basel, 1996, pp. 1–15.
2. D. Augot, M. Bardet, and J.-C. Faugère, Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Gröbner bases, Proc. of ISIT 2003, 2003, pp. 362.
3. D. Augot, M. Bardet, and J.-C. Faugère, On formulas for decoding binary cyclic codes, Proc. of ISIT 2007, 2007, pp. 2646–2650.
4. D. Augot, E. Betti, and E. Orsini, An introduction to linear and cyclic codes, this volume, 2009, pp. 47–68.
5. E. R. Berlekamp, Algebraic coding theory, McGraw–Hill, New York, 1968.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Introduction to Linear and Cyclic Codes;Gröbner Bases, Coding, and Cryptography;2009
2. The FGLM Problem and Möller’s Algorithm on Zero-dimensional Ideals;Gröbner Bases, Coding, and Cryptography;2009
3. Gröbner Bases, Coding, and Cryptography: a Guide to the State-of-Art;Gröbner Bases, Coding, and Cryptography;2009
4. Mattson Solomon Transform and Algebra Codes;Gröbner Bases, Coding, and Cryptography;2009
5. Decoding Linear Error-Correcting Codes up to Half the Minimum Distance with Gröbner Bases;Gröbner Bases, Coding, and Cryptography;2009