Author:
Le Van Bang,de Ridder H. N.
Publisher
Springer Berlin Heidelberg
Reference28 articles.
1. Bayer, D.: Über probe-trivially-perfect und probe-Cographen, Diplomarbeit, Universität Rostock, Institut für Informatik (2006)
2. Bayer, D., Van Bang Le, de Ridder, H.N.: Probe trivially perfect graphs and probe threshold graphs, Manuscript (2006)
3. Berry, A., Golumbic, M.C., Lipshteyn, M.: Recognizing chordal probe graphs and cycle-bicolorable graphs. SIAM J. Discrete Math. 21, 573–591 (2007)
4. Brandstädt, A., Van Bang Le, Spinrad, J.P.: Graph Classes: A Survey, Philadelphia. SIAM Monographs on Discrete Math. Appl., vol. 3 (1999)
5. Lecture Notes in Computer Science;D.B. Chandler,2006
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The ( k , ℓ ) unpartitioned probe problem NP-complete versus polynomial dichotomy;Information Processing Letters;2016-04
2. Recognition of Probe Ptolemaic Graphs;Lecture Notes in Computer Science;2011
3. On Some Simple Widths;WALCOM: Algorithms and Computation;2010
4. A characterization of chain probe graphs;Annals of Operations Research;2009-07-01
5. Probe Ptolemaic Graphs;Lecture Notes in Computer Science