1. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, pp. 226–231 (1996)
2. Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J.: Optics: ordering points to identify the clustering structure. In: SIGMOD ’99: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, Philadelphia, Pennsylvania, United States, pp. 49–60. ACM Press, New York (1999)
3. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Eighteenth Annual Conference on Neural Information Processing Systems (2004)
4. Celebi, M.E., Aslandogan, Y.A., Bergstresser, P.R.: Mining biomedical images with density-based clustering. In: ITCC ’05: Proceedings of the International Conference on Information Technology: Coding and Computing, Washington, DC, USA, vol. I, pp. 163–168. IEEE Computer Society Press, Los Alamitos (2005)
5. Sander, J., Ester, M., Kriegel, H.-P., Xu, X.: Density-based clustering in spatial databases: The algorithm gdbscan and its applications. Data Mining and Knowledge Discovery 2(2), 169–194 (1998)