Author:
Palomo Esteban J.,Domínguez Enrique,Luque Rafael Marcos,Muñoz José
Publisher
Springer Berlin Heidelberg
Reference11 articles.
1. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological cybernetics 43(1), 59–69 (1982)
2. Rauber, A., Merkl, D., Dittenbach, M.: The growing hierarchical self-organizing map: Exploratory analysis of high-dimensional data. IEEE Transactions on Neural Networks 13(6), 1331–1341 (2002)
3. Lee, W., Stolfo, S., Chan, P., Eskin, E., Fan, W., Miller, M., Hershkop, S., Zhang, J.: Real time data mining-based intrusion detection. In: DARPA Information Survivability Conference and Exposition II, vol. 1, pp. 89–100 (2001)
4. Maxion, R., Tan, K.: Anomaly detection in embedded systems. IEEE Transactions on Computers 51(2), 108–120 (2002)
5. Tan, K., Maxion, R.: Determining the operational limits of an anomaly-based intrusion detector. IEEE Journal on Selected Areas in Communications 21(1), 96–110 (2003)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An optimized network intrusion detection model;2022 IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC);2022-12-16
2. RESEARCH OF TWO APPROACHES TO DETECT NETWORK ATTACKS USING NEURAL NETWORK TECHNOLOGIES;Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport;2020-07-17
3. Growing Hierarchical Self-organizing Maps and Statistical Distribution Models for Online Detection of Web Attacks;Lecture Notes in Business Information Processing;2013
4. Machine Learning Based Autonomous Network Flow Identifying Method;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2012