1. S. Bertoluzza and S. Falletta, An object-oriented implementation of the mortar method with approximate constraint, Tech. Rep. 10, Istituto di Matematica Applicata e Tecnologie Informatiche, Consiglio Nazionale delle Ricerche, Pavia, Italy, 2004.
2. S. Bertoluzza, S. Falletta, and V. Perrier, Wavelet/FEM coupling by the mortar method, in Recent Developments in Domain Decomposition Methods. Proceedings of the Workshop on Domain Decomposition, Zürich, Switzerland, vol. 23 of Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2002, pp. 119–132.
3. D. Braess and W. Dahmen, The mortar element method revisited—what are the right norms?, in Thirteenth international conference on domain decomposition, N. Debit, M. Garbey, R. Hoppe, J. Périaux, D. Keyes, and Y. Kuznetsov, eds., ddm.org, 2001, pp. 27–40.
4. L. Cazabeau, C. Lacour, and Y. Maday, Numerical quadratures and mortar methods, in Computational Science for the 21st Century, M.-O. Bristeau, G. Etgen, W. Fitzgibbon, J.-L. Lions, J. Périaux, and M. F. Wheeler, eds., John Wiley & Sons, 1997, pp. 119–128.
5. S. Falletta, Analysis of the mortar method with approximate integration: the effect of cross-points, Tech. Rep. 1298, Istitoto Analisi Numerica, Consiglio Nazionale delle Ricerche, Pavia, Italy, 2002.