1. Carlini, E.: Semi-Lagrangian schemes for first and second order Hamilton-Jacobi equations, Ph.D Thesis, Università di Roma “La Sapienza”, Roma (2004)
2. Johnson, C.: Adaptive finite element methods for conservation laws. In: Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E., Advanced numerical approximation of nonlinear hyperbolic equations. Papers from the C.I.M.E. Summer School held in Cetraro, June 23–28, 1997. Edited by Alffo Quarteroni. Lecture Notes in Mathematics, 1697. Springer-Verlag, Berlin (1998)
3. ÊJohnson, C.: Adaptive computational methods for differential equations. ICIAM 99 (Edinburgh), 96–104, Oxford Univ. Press, Oxford (2000)
4. M. Falcone, R. Ferretti: Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods. J. Comp. Phys., 175, 559–575 (2002)
5. Falcone, M., Ferretti, R.: Consistency of a large time-step scheme for mean curvature motion. In: Brezzi, F., Buffa, A., Corsaro, S., Murli, A., (eds) Numerical Mathematics and Advanced Applications — ENUMATH 2001. Springer-Verlag, Milano (2003)