1. Kreimer, D.: New mathematical structures in renormalizable quantum field theories. Annals Phys. 303 (2003) 179 [Erratumibid. 305 (2003) 79] [arXiv:hep-th/0211136].
2. C. Bergbauer and D. Kreimer, Hopf Algebras in Renormalization Theory: Locality and DysonSchwinger Equations from Hochschild Cohomology, in IRMA lectures in Mathematics and Theoretical Physics Vol. 10, Physics and Number Theory, European Mathematical Society, Eds. V. Turaev, L. Nyssen.
3. Kreimer, D.: Anatomy of a gauge theory, preprint hep-th/0509135, Annals of Physics (2006), e-published, paper version in press.
4. Gangl, H, Goncharov, A.B., Levin, A.: Multiple logarithms, algebraic cycles and trees. Frontiers in Number Theory, Physics, and Geometry II, pp. 759–774.
5. Cartier, P: A primer of hopf algebras. Frontiers in Number Theory, Physics, and Geometry II, pp. 537–616.