Author:
Mandel J.,Chen M.,Franca L. P.,Johns C.,Puhalskii A.,Coen J. L.,Douglas C. C.,Kremens R.,Vodacek A.,Zhao W.
Publisher
Springer Berlin Heidelberg
Reference34 articles.
1. Albini, F.A.: PROGRAM BURNUP: A simulation model of the burningof large woody natural fuels. Final Report on Research Grant INT-92754-GR by U.S.F.S. to Montana State Univ., Mechanical Engineering Dept (1994)
2. Anderson, H.: Aids to determining fuel models for estimating fire behavior. USDA Forest Service, Intermountain Forest and Range Experiment Station, Report INT-122 (1982)
3. Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing 50, 174–188 (2002)
4. Asensio, M.I., Ferragut, L.: On a wildland fire model with radiation. Int. J. Numer. Meth. Engrg. 54, 137–157 (2002)
5. Bengtsson, T., Snyder, C., Nychka, D.: A nonlinear filter that extends to high dimensional systems. J. of Geophys. Res. - Atmosphere, in review (2003)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. DDDAS-Based Remote Sensing;Handbook of Dynamic Data Driven Applications Systems;2023
2. Using Dynamic Data-Driven Cyberinfrastructure for Next-Generation Wildland Fire Intelligence;Handbook of Dynamic Data Driven Applications Systems;2023
3. Aggregate Drone Monitoring of Wildfires;2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2022-09-12
4. Characterizing Wildfire Perimeter Polygons from QUIC-Fire;Computational Science – ICCS 2022;2022
5. Improving Wildfire Simulations by Estimation of Wildfire Wind Conditions from Fire Perimeter Measurements;Computational Science – ICCS 2021;2021