Predicting the wicking rate of nitrocellulose membranes from recipe data: a case study using ANN at a membrane manufacturing in South Korea

Author:

Dissanayake Janith,Kang Sung Bong,Park Jihoon,Yinbao Fang,Park Sungryul,Lee Min-HoORCID

Abstract

AbstractLateral flow assays have been widely used for detecting coronavirus disease 2019 (COVID-19). A lateral flow assay consists of a Nitrocellulose (NC) membrane, which must have a specific lateral flow rate for the proteins to react. The wicking rate is conventionally used as a method to assess the lateral flow in membranes. We used multiple regression and artificial neural networks (ANN) to predict the wicking rate of NC membranes based on membrane recipe data. The developed ANN predicted the wicking rate with a mean square error of 0.059, whereas the multiple regression had a square error of 0.503. This research also highlighted the significant impact of the water content on the wicking rate through images obtained from scanning electron microscopy. The findings of this research can cut down the research and development costs of novel NC membranes with a specific wicking rate significantly, as the algorithm can predict the wicking rate based on the membrane recipe. Graphical abstract Correlation matrix displaying the distribution of the variables and linear correlations

Funder

Ministry of Trade, Industry and Energy

Chung-Ang University

Publisher

Springer Science and Business Media LLC

Reference21 articles.

1. Johns Hopkins University And Medical, Coronavirus Resource Center, 2023. Available At https://coronavirus.jhu.edu/. Accessed On March 16 2023.

2. Fda, Covid-19 tests and collection kits authorized by the Fda in 2020. Available At: https://www.fda.gov/medical-devices. Accessed On February 17 2023.

3. H. Ritchie, E. Ortiz-Ospina, D. Beltekian, E. Mathieu, J. Hasell, B. Macdonald, C. Giattino, C. Appel, L. Rodés-Guirao, M. Roser, Coronavirus Pandemic (Covid-19). Available at https://ourworldindata.org/coronavirus. Accessed 3 May 2021

4. A. Biby, X. Wang, X. Liu, O. Roberson, A. Henry, X. Xia, Rapid testing for coronavirus disease 2019 (Covid-19). Mrs. Commun. 12(1), 12–23 (2022). https://doi.org/10.1557/S43579-021-00146-5. (Epub 2022 Jan 20. Pmid: 35075405; Pmcid: Pmc8769796)

5. A. Crozier, S. Rajan, I. Buchan, M. Mckee, Put to the test: use of rapid testing technologies for covid-19. BMJ 372, N208 (2021). https://doi.org/10.1136/Bmj.N208

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3