Optimally rescheduling jobs with a Last-In-First-Out buffer

Author:

Nicosia GaiaORCID,Pacifici AndreaORCID,Pferschy UlrichORCID,Resch Julia,Righini Giovanni

Abstract

AbstractThis paper considers single-machine scheduling problems in which a given solution, i.e., an ordered set of jobs, has to be improved as much as possible by re-sequencing the jobs. The need for rescheduling may arise in different contexts, e.g., due to changes in the job data or because of the local objective in a stage of a supply chain that is not aligned with the given sequence. A common production setting entails the movement of jobs (or parts) on a conveyor. This is reflected in our model by facilitating the re-sequencing of jobs via a buffer of limited capacity accessible by a LIFO policy. We consider the classical objective functions of total weighted completion time, maximum lateness and (weighted) number of late jobs and study their complexity. For three of these problems, we present strictly polynomial-time dynamic programming algorithms, while for the case of minimizing the weighted number of late jobs NP-hardness is proven and a pseudo-polynomial algorithm is given.

Funder

regione lombardia

ministero dell’istruzione

dell’università e della ricerca

karl-franzens-universität graz

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Management Science and Operations Research,General Engineering,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3