Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Management Science and Operations Research,General Engineering,Software
Reference21 articles.
1. Baptiste, P., Brucker, P., Knust, S., & Timkovsky, V. G. (2004). Ten notes on equal-processing-time scheduling. Quarterly Journal of the Belgian French and Italian Operations Research Societies, 2(2), 111–127.
2. Brucker, P., Hurink, J. L., & Knust, S. (2001). A polynomial algorithm for $${P}|p_j=1, r_j, outtree|\sum {C}_j$$. Mathematical Methods of Operations Research, 56, 407–412.
3. Brucker, P., Heitmann, S., & Hurink, J. (2003). How useful are preemptive schedules? Operations Research Letters, 31(2), 129–136.
4. Chen, B., Coffman, E., Dereniowski, D., & Kubiak, W. (2016). Normal-form preemption sequences for an open problem in scheduling theory. Journal of Scheduling, 19(6), 701–728.
5. Coffman, E. G., Dereniowski, D., & Kubiak, W. (2012). An efficient algorithm for finding ideal schedules. Acta Informatica, 49(1), 1–14.