Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Management Science and Operations Research,General Engineering,Software
Reference67 articles.
1. Alcaraz, J., Maroto, C., & Ruiz, R. (2003). Solving the multi-mode resource-constrained project scheduling problem with genetic algorithms. Journal of the Operational Research Society, 54(6), 614–626.
2. Asta, S., Karapetyan, D., Kheiri, A., Özcan, E., & Parkes, A. J. (2015). Combining Monte-Carlo and hyper-heuristic methods for the multi-mode resource-constrained multi-project scheduling problem. Information Sciences, 373, 476–498.
3. Barrios, A., Ballestin, F., & Valls, V. (2011). A double genetic algorithm for the mrcpsp/max. Computers & Operations Research, 38(1), 33–43.
4. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal statistical society: Series B (Methodological), 57(1), 289–300.
5. Blazewicz, J., Lenstra, J. K., & Kan, A. R. (1983). Scheduling subject to resource constraints: Classification and complexity. Discrete Applied Mathematics, 5(1), 11–24.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献