Twin-crane scheduling during seaside workload peaks with a dedicated handshake area

Author:

Zey LennartORCID,Briskorn Dirk,Boysen Nils

Abstract

AbstractTo enable the efficient division of labor in container yards, many large ports apply twin cranes, two identical automated stacking cranes each dedicated to one of the transfer zones on the seaside and landside. The use of a handshake area, a bay of containers that separates the dedicated areas of the two cranes, is a simple means to avoid crane interference. Inbound containers arriving in the transfer zone of one crane and dedicated to a stacking position of the other crane’s area are placed intermediately in the handshake area by the first crane and then taken over by the second crane, and vice versa for outbound containers. Existing research only evaluates simple heuristics and rule-based approaches for the coordination of twin cranes interconnected by a handshake area. For this setting, accounting for precedence constraints due to stacking containers in the handshake area, we derive exact solution procedures under a makespan minimization objective. In this way, a comprehensive computational evaluation is enabled, which benchmarks heuristics with optimal solutions and additionally compares alternative crane settings (i.e., without workload sharing and cooperation with flexible handover). We further provide insights into where to position the handshake area. Our results reveal that when planning is too simple (i.e., with a rule-based approach), optimality gaps become large, but with sophisticated optimization, the price of a simplified crane coordination via a handshake area is low.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Management Science and Operations Research,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3