An MDS-based unifying approach to time series K-means clustering: application in the dynamic time warping framework

Author:

Vera J. Fernando,Angulo José M.

Abstract

AbstractPartitioning algorithms, and in particular K-means clustering, are widely used in time series analysis. K-means clustering is intrinsically related to the use of the Euclidean distance as a measure of dissimilarity. When other dissimilarity measures, such as dynamic time warping, are involved, K-means clustering is usually replaced by the optimisation of a sums-of-the-stars clustering criterion, giving rise to an algorithm other than that of K-means, such as K-medoids. Another common restriction in the implementation of K-means concerns the need to estimate the average as the cluster prototype, which may represent a drawback for this method in time series when elastic measures such as dynamic time warping are used. In this paper, we propose a multidimensional scaling based K-means clustering algorithm that enables the use of K-means clustering together with any dissimilarity measure, and in particular with dynamic time warping, without requiring us to estimate cluster prototypes for the time series. This procedure is a true K-means clustering algorithm that searches for the partition in an equivalent auxiliary configuration, usually in a dimension lower than the time series length. The approach proposed is of particular interest when dynamic time warping is used in the analysis of series of unequal length and/or when some data are missing, and hence Euclidean distances cannot be used. The performance of our procedure is tested by conducting an extensive Monte Carlo experiment, comparing the results with those obtained by K-medoids. The procedure is also illustrated with the analysis of carbon dioxide emissions from 133 countries.

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Safety, Risk, Reliability and Quality,Water Science and Technology,Environmental Chemistry,Environmental Engineering

Reference39 articles.

1. Aghabozorgi S, Shirkhorshidi A, Wah T (2015) Time-series clustering—a decade review. Inf Syst 53:16–38

2. Anderson TW (1958) An introduction to multivariate statistical analysis. Wiley, New York

3. Caiado J, Crato N, Peña D (2009) Comparison of times series with unequal length in the frequency domain. Commun Stat Simul Comput 38:527–540

4. Calinski RB, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat Theory Methods 3:1–27

5. Chen Y, Keogh BH, Begum N, Bagnall A, Mueen A, Batista G (2015) The UCR time series classification archive. http://www.timeseriesclassification.com/index.php

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3