Multimodal diffusion model for increments of electroencephalogram data

Author:

Leonenko N. N.ORCID,Salinger Z.,Sikorskii A.ORCID,Šuvak N.ORCID,Boivin M. J.ORCID

Abstract

AbstractWe propose a new strictly stationary strong mixing diffusion model with marginal multimodal (three-peak) distribution and exponentially decaying autocorrelation function for modeling of increments of electroencephalogram data collected from Ugandan children during coma from cerebral malaria. We treat the increments as discrete-time observations and construct a diffusion process where the stationary distribution is viewed as a mixture of three non-central generalized Gaussian distributions and we state some important properties related to the moments of this mixture. We estimate the distribution parameters using the expectation-maximization algorithm, where the added shape parameter is estimated using the higher order statistics approach based on an analytical relationship between the shape parameter and kurtosis. The derived estimates are then used for prediction of subsequent neurodevelopment and cognition of cerebral malaria survivors using the elastic net regression. We compare different predictive models and determine whether additional information obtained from multimodality of the marginal distributions can be used to improve the prediction.

Funder

Australian Research Council

LMS

EPSRC

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Safety, Risk, Reliability and Quality,Water Science and Technology,Environmental Chemistry,Environmental Engineering

Reference24 articles.

1. Alexander C, Narayanan S (2001) Option pricing with normal mixture returns: modelling excess kurtosis and uncertanity in volatility

2. Bangirana P, Opoka RO, Boivin MJ, Idro R, Hodges JS, John CC (2016) Neurocognitive domains affected by cerebral malaria and severe malarial anemia in children. Learn Individ Differ 46:38–44

3. Bibby BM, Skovgaard MI, Sørensen M (2005) Diffusion-type models with given marginal distribution and autocorrelation function. Bernoulli 11(2):191–220

4. Bradley RH, Caldwell BM (1979) Home observation for measurement of the environment

5. Brigo D (2008) The general mixture diffusion SDE and its relationship with an uncertain-volatility option model with volatility-asset decorrelation. SSRN Electron J. arXiv:0812.4052v1

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3