Functional ANOVA approaches for detecting changes in air pollution during the COVID-19 pandemic

Author:

Acal Christian,Aguilera Ana M.,Sarra Annalina,Evangelista Adelia,Di Battista Tonio,Palermi Sergio

Abstract

AbstractFaced with novel coronavirus outbreak, the most hard-hit countries adopted a lockdown strategy to contrast the spread of virus. Many studies have already documented that the COVID-19 control actions have resulted in improved air quality locally and around the world. Following these lines of research, we focus on air quality changes in the urban territory of Chieti-Pescara (Central Italy), identified as an area of criticality in terms of air pollution. Concentrations of $$\hbox {NO}_{{2}}$$ NO 2 , $$\hbox {PM}_{{10}}$$ PM 10 , $$\hbox {PM}_{2.5}$$ PM 2.5 and benzene are used to evaluate air pollution changes in this Region. Data were measured by several monitoring stations over two specific periods: from 1st February to 10 th March 2020 (before lockdown period) and from 11st March 2020 to 18 th April 2020 (during lockdown period). The impact of lockdown on air quality is assessed through functional data analysis. Our work makes an important contribution to the analysis of variance for functional data (FANOVA). Specifically, a novel approach based on multivariate functional principal component analysis is introduced to tackle the multivariate FANOVA problem for independent measures, which is reduced to test multivariate homogeneity on the vectors of the most explicative principal components scores. Results of the present study suggest that the level of each pollutant changed during the confinement. Additionally, the differences in the mean functions of all pollutants according to the location and type of monitoring stations (background vs traffic), are ascribable to the $$\hbox {PM}_{{10}}$$ PM 10 and benzene concentrations for pre-lockdown and during-lockdown tenure, respectively. FANOVA has proven to be beneficial to monitoring the evolution of air quality in both periods of time. This can help environmental protection agencies in drawing a more holistic picture of air quality status in the area of interest.

Funder

pid2020

fpu18

Università degli Studi G. D'Annunzio Chieti Pescara

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Safety, Risk, Reliability and Quality,Water Science and Technology,Environmental Chemistry,Environmental Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3