Downscaling long lead time daily rainfall ensemble forecasts through deep learning

Author:

Jin HuidongORCID,Jiang Weifan,Chen Minzhe,Li MingORCID,Bakar K. ShuvoORCID,Shao QuanxiORCID

Abstract

AbstractSkilful and localised daily weather forecasts for upcoming seasons are desired by climate-sensitive sectors. Various General circulation models routinely provide such long lead time ensemble forecasts, also known as seasonal climate forecasts (SCF), but require downscaling techniques to enhance their skills from historical observations. Traditional downscaling techniques, like quantile mapping (QM), learn empirical relationships from pre-engineered predictors. Deep-learning-based downscaling techniques automatically generate and select predictors but almost all of them focus on simplified situations where low-resolution images match well with high-resolution ones, which is not the case in ensemble forecasts. To downscale ensemble rainfall forecasts, we take a two-step procedure. We first choose a suitable deep learning model, very deep super-resolution (VDSR), from several outstanding candidates, based on an ensemble forecast skill metric, continuous ranked probability score (CRPS). Secondly, via incorporating other climate variables as extra input, we develop and finalise a very deep statistical downscaling (VDSD) model based on CRPS. Both VDSR and VDSD are tested on downscaling 60 km rainfall forecasts from the Australian Community Climate and Earth-System Simulator Seasonal model version 1 (ACCESS-S1) to 12 km with lead times up to 217 days. Leave-one-year-out testing results illustrate that VDSD has normally higher forecast accuracy and skill, measured by mean absolute error and CRPS respectively, than VDSR and QM. VDSD substantially improves ACCESS-S1 raw forecasts but does not always outperform climatology, a benchmark for SCFs. Many more research efforts are required on downscaling and climate modelling for skilful SCFs.

Funder

Commonwealth Scientific and Industrial Research Organisation

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Safety, Risk, Reliability and Quality,Water Science and Technology,Environmental Chemistry,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3