A new approach for hydrograph data interpolation and outlier removal for vector autoregressive modelling: a case study from the Odra/Oder River

Author:

Halicki Michał,Niedzielski Tomasz

Abstract

AbstractThis study presents a new approach for predicting water levels of the Odra/Oder river using vector autoregressive models (VAR). We use water level time series from 27 gauging stations, on which we interpolate no-data gaps using the LinAR method and detect outliers with two separate methods: the extreme values (EV) approach and the isolation forest (IFO) algorithm. Before removing potential outliers, we propose a hydrological evaluation based on multivariate data analysis. Finally, we consider three separate data scenarios, i.e. LinAR (no outlier rejection), EV, and IFO. VAR models for six prediction gauges were built in a moving window manner on the most recent 720 hourly water levels prior to each prediction. The analysis covered the time range from January 2016 to May 2022 and resulted in $$\varvec{\approx }$$ 1,000,000 water level forecasts (3 scenarios x 6 gauges x 55,000 hourly time steps) with lead time of 72 h. The analysis of root mean squared error (RMSE) indicates that the VAR model performs well, especially for 24-hour predictions, with RMSE values ranging from 8 to 28 cm. The model was also found to have skills in predicting a rising limb of a hydrograph. Our numerical experiments showed the susceptibility of the VAR predictions to artefacts. The IFO method was found to detect outliers skilfully, which allowed to produce the most accurate VAR-based predictions.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3