An enhanced fourier neural operator surrogate for radioactive plume transport forecasting

Author:

Ayoub Ali,Wainwright Haruko M.,Wang Lijing,Sansavini Giovanni

Abstract

AbstractAccurate real-time forecasts of atmospheric plume behavior are crucial for effective management of environmental release incidents. However, the computational demands of weather simulations and particle transport codes limit their applicability during emergencies. In this study, we employ a U-Net enhanced Fourier Neural Operator (U-FNO) to statistically emulate the calculations of the WSPEEDI dose forecasting numerical simulator, using pre-calculated ensemble simulations. The developed emulator is capable of effectively simulating any radioactive-release scenario and generating the time series of dose distribution in the environment 4000 times faster than the numerical simulator, while still maintaining high accuracy. It predicts the plume direction, extent, and dose-rate magnitudes using initial- and boundary-condition meteorological data as input. The speed and efficiency of this framework offers a powerful tool for swift decision-making during emergencies, facilitating risk-informed protective actions, evacuation execution, and zone delineation. Its application extends to various contaminant release and transport problems, and can be instrumental in engineering tasks requiring uncertainty quantification (UQ) for environmental risk assessment.

Funder

Massachusetts Institute of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3