Autoregressive count data modeling on mobility patterns to predict cases of COVID-19 infection

Author:

Zhao Jing,Han MengjieORCID,Wang Zhenwu,Wan Benting

Abstract

AbstractAt the beginning of 2022 the global daily count of new cases of COVID-19 exceeded 3.2 million, a tripling of the historical peak value reported between the initial outbreak of the pandemic and the end of 2021. Aerosol transmission through interpersonal contact is the main cause of the disease’s spread, although control measures have been put in place to reduce contact opportunities. Mobility pattern is a basic mechanism for understanding how people gather at a location and how long they stay there. Due to the inherent dependencies in disease transmission, models for associating mobility data with confirmed cases need to be individually designed for different regions and time periods. In this paper, we propose an autoregressive count data model under the framework of a generalized linear model to illustrate a process of model specification and selection. By evaluating a 14-day-ahead prediction from Sweden, the results showed that for a dense population region, using mobility data with a lag of 8 days is the most reliable way of predicting the number of confirmed cases in relative numbers at a high coverage rate. It is sufficient for both of the autoregressive terms, studied variable and conditional expectation, to take one day back. For sparsely populated regions, a lag of 10 days produced the lowest error in absolute value for the predictions, where weekly periodicity on the studied variable is recommended for use. Interventions were further included to identify the most relevant mobility categories. Statistical features were also presented to verify the model assumptions.

Funder

Dalarna University

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Safety, Risk, Reliability and Quality,Water Science and Technology,Environmental Chemistry,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3