Abstract
AbstractThe extrapolation of quantiles beyond or below the largest or smallest observation plays an important role in hydrological practice, design of hydraulic structures, water resources management, or risk assessment. Traditionally, extreme quantiles are obtained using parametric methods that require to make an a priori assumption about the distribution that generated the data. This approach has several limitations mainly when applied to the tails of the distribution. Semiparametric or nonparametric methods, on the other hand, allow more flexibility and they may overcome the problems of the parametric approach. Therefore, we present here a comparison between three selected semi/nonparametric methods, namely the methods of Hutson (Stat and Comput, 12(4):331–338, 2002) and Scholz (Nonparametric tail extrapolation. Tech. Rep. ISSTECH-95-014, Boeing Information and Support Services, Seattle, WA, United States of America, 1995) and kernel density estimation. While the first and third methods have already applications in hydrology, Scholz (Nonparametric tail extrapolation. Tech. Rep. ISSTECH-95-014, Boeing Information and Support Services, Seattle, WA, United States of America, 1995) is proposed in this context for the first time. After describing the methods and their applications in hydrology, we compare their performance for different sample lengths and return periods. We use synthetic samples extracted from four distributions whose maxima belong to the Gumbel, Weibull, and Fréchet domain of attraction. Then, the same methods are applied to a real precipitation dataset and compared with a parametric approach. Eventually, a detailed discussion of the results is presented to guide researchers in the choice of the most suitable method. None of the three methods, in fact, outperforms the others; performances, instead, vary greatly with distribution type, return period, and sample size.
Publisher
Springer Science and Business Media LLC
Subject
General Environmental Science,Safety, Risk, Reliability and Quality,Water Science and Technology,Environmental Chemistry,Environmental Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献