Assessment of turbulence effects on effective solute diffusivity close to a sediment-free fluid interface

Author:

Baioni E.,Porta G. M.,Mousavi Nezhad M.ORCID,Guadagnini A.

Abstract

AbstractOur work is focused on the analysis of solute mixing under the influence of turbulent flow propagating in a porous system across the interface with a free fluid. Such a scenario is representative of solute transport and chemical mixing in the hyporheic zone. The study is motivated by recent experimental results (Chandler et al. Water Res Res 52(5):3493–3509, 2016) which suggested that the effective diffusion parameter is characterized by an exponentially decreasing trend with depth below the sediment-water interface. This result has been recently employed to model numerically downstream solute transport and mixing in streams. Our study provides a quantification of the uncertainty associated with the interpretation of the available experimental data. Our probabilistic analysis relies on a Bayesian inverse modeling approach implemented through an acceptance/rejection algorithm. The stochastic inversion workflow yields depth-resolved posterior (i.e., conditional on solute breakthrough data) probability distributions of the effective diffusion coefficient and enables one to assess the impact on these of (a) the characteristic grain size of the solid matrix associated with the porous medium and (b) the turbulence level at the water-sediment interface. Our results provide quantitative estimates of the uncertainty associated with spatially variable diffusion coefficients. Finally, we discuss possible limitations about the generality of the conclusions one can draw from the considered dataset.

Funder

Engineering and Physical Sciences Research Council

University of Warwick

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Safety, Risk, Reliability and Quality,Water Science and Technology,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3