The assessment of potential observability for joint chemical states and emissions in atmospheric modelings

Author:

Wu XueranORCID,Elbern Hendrik,Jacob Birgit

Abstract

AbstractIn predictive geophysical model systems, uncertain initial values and model parameters jointly influence the temporal evolution of the system. This renders initial-value-only optimization by traditional data assimilation methods as insufficient. However, blindly extending the optimization parameter set jeopardizes the validity of the resulting analysis because of the increase of the ill-posedness of the inversion task. Hence, it becomes important to assess the potential observability of measurement networks for model state and parameters in atmospheric modelings in advance of the optimization. In this paper, we novelly establish the dynamic model of emission rates and extend the transport-diffusion model extended by emission rates. Considering the Kalman smoother as underlying assimilation technique, we develop a quantitative assessment method to evaluate the potential observability and the sensitivity of observation networks to initial values and emission rates jointly. This benefits us to determine the optimizable parameters to observation configurations before the data assimilation procedure and make the optimization more efficiently. For high-dimensional models in practical applications, we derive an ensemble based version of the approach and give several elementary experiments for illustrations.

Funder

Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research

Forschungszentrum Jülich GmbH

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Safety, Risk, Reliability and Quality,Water Science and Technology,Environmental Chemistry,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3