The use of artificial neural networks in the determination of soil grain composition

Author:

Sekuła KlaudiaORCID,Karłowska-Pik JoannaORCID,Kmiecik EwaORCID

Abstract

AbstractThe paper presents the possibility of using data mining tools — artificial neural networks — in prediction of hydrometer reading after 24 h in order to limit the duration of the test to 4 h. The authors analysed a database of 693 granulometric composition analysis results of genetically different soils with the use of radial basis function network (RBF) and multilayer perceptron (MLP). The calculations performed showed that it is possible to use MLP to shorten the test time without affecting the quality of the results. The presented accuracy of the model, in the range of 0.55–0.72, allows one to determine the content of silt and clay fractions with an accuracy of 0.49% for equivalent diameter (dT) and 1.50% for percentage of all particles with a diameter smaller than dT (ZT). The results were better than that achieved using linear re-gression models with all predictors (REG), stepwise regression models (SREG), and classification and regression trees (CRT). Taking into account the uncertainty of hydrometric determinations, the obtained forecast values is lower than this uncertainty, therefore neural networks can be used to predict the results of this type of research.

Funder

Akademia Górniczo-Hutnicza im. Stanislawa Staszica

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Safety, Risk, Reliability and Quality,Water Science and Technology,Environmental Chemistry,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3