Exploring substitution random functions composed of stationary multi-Gaussian processes

Author:

Straubhaar Julien,Renard Philippe

Abstract

AbstractSimulation of random fields is widely used in Earth sciences for modeling and uncertainty quantification. The spatial features of these fields may have a strong impact on the forecasts made using these fields. For instance, in flow and transport problems the connectivity of the permeability fields is a crucial aspect. Multi-Gaussian random fields are the most common tools to analyze and model continuous fields. Their spatial correlation structure is described by a covariance or variogram model. However, these types of spatial models are unable to represent highly or poorly connected structures even if a broad range of covariance models can be employed. With this type of model, the regions with values close to the mean are always well connected whereas the regions of low or high values are isolated. Substitution random functions (SRFs) belong to another broad class of random functions that are more flexible. SRFs are constructed by composing ($$Z=Y\circ T$$ Z = Y T ) two stochastic processes: the directing function T (latent field) and the coding process Y (modifying the latent field in a stochastic manner). In this paper, we study the properties of SRFs obtained by combining stationary multi-Gaussian random fields for both T and Y with bounded variograms. The resulting SRFs Z are stationary, but as T has a finite variance Z is not ergodic for the mean and the covariance. This means that single realizations behave differently from each other. We propose a simple technique to control which values (low, intermediate, or high) are connected. It consists of adding a control point on the process Y to guide every single realization. The conditioning to local values is obtained using a Gibbs sampler.

Funder

Swiss National Science Foundation

University of Neuchâtel

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3