A parsimonious, computationally efficient machine learning method for spatial regression

Author:

Žukovič Milan,Hristopulos Dionissios T.

Abstract

AbstractWe introduce the modified planar rotator method (MPRS), a physically inspired machine learning method for spatial/temporal regression. MPRS is a non-parametric model which incorporates spatial or temporal correlations via short-range, distance-dependent “interactions” without assuming a specific form for the underlying probability distribution. Predictions are obtained by means of a fully autonomous learning algorithm which employs equilibrium conditional Monte Carlo simulations. MPRS is able to handle scattered data and arbitrary spatial dimensions. We report tests on various synthetic and real-word data in one, two and three dimensions which demonstrate that the MPRS prediction performance (without hyperparameter tuning) is competitive with standard interpolation methods such as ordinary kriging and inverse distance weighting. MPRS is a particularly effective gap-filling method for rough and non-Gaussian data (e.g., daily precipitation time series). MPRS shows superior computational efficiency and scalability for large samples. Massive datasets involving millions of nodes can be processed in a few seconds on a standard personal computer. We also present evidence that MPRS, by avoiding the Gaussian assumption, provides more reliable prediction intervals than kriging for highly skewed distributions.

Funder

Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

Agentúra na Podporu Výskumu a Vývoja

Pavol Jozef Šafárik University in Košice

Publisher

Springer Science and Business Media LLC

Reference53 articles.

1. Anonymous (2011) TRMM microwave imager precipitation profile L3 1 month 0.5 degree x 0.5 degree V7. https://disc.gsfc.nasa.gov/datasets/TRMM_3A12_7/summary, [NASA Tropical Rainfall Measuring Mission (TRMM); Accessed 30 Sept 2008

2. Atteia O, Dubois JP, Webster R (1994) Geostatistical analysis of soil contamination in the Swiss Jura. Environ Pollut 86(3):315–327

3. Cao J, Worsley K (2001) Applications of random fields in human brain mapping. In: Spatial statistics: methodological aspects and applications. Springer, pp 169–182

4. Cheng T (2013) Accelerating universal kriging interpolation algorithm using CUDA-enabled GPU. Comput Geosci 54:178–183. https://doi.org/10.1016/j.cageo.2012.11.013

5. Christakos G (2012) Random field models in earth sciences. Courier Corporation, New York

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3