Author:
Xiong Qing-Ping,Li Jing,Li Hao,Huang Zhi-Xuan,Dong Han,Wang En-Duo,Liu Ru-Juan
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Environmental Science,General Biochemistry, Genetics and Molecular Biology
Reference72 articles.
1. Abedini, S.S., Kahrizi, K., De Pouplana, L.R., and Najmabadi, H. (2018). tRNA methyltransferase defects and intellectual disability. Arch Iran Med 21, 478–485.
2. Arimbasseri, A.G., and Maraia, R.J. (2016). RNA polymerase III advances: structural and tRNA functional views. Trends Biochem Sci 41, 546–559.
3. Arimbasseri, A.G., Blewett, N.H., Iben, J.R., Lamichhane, T.N., Cherkasova, V., Hafner, M., and Maraia, R.J. (2015). RNA polymerase III output is functionally linked to tRNA dimethyl-G26 modification. PLoS Genet 11, e1005671.
4. Awai, T., Kimura, S., Tomikawa, C., Ochi, A., Ihsanawati, A., Bessho, Y., Yokoyama, S., Ohno, S., Nishikawa, K., Yokogawa, T., et al. (2009). Aquifex aeolicus tRNA (N2,N2-guanine)-dimethyltransferase (Trm1) catalyzes transfer of methyl groups not only to guanine 26 but also to guanine 27 in tRNA. J Biol Chem 284, 20467–20478.
5. Awai, T., Ochi, A., Ihsanawati, A., Sengoku, T., Hirata, A., Bessho, Y., Yokoyama, S., and Hori, H. (2011). Substrate tRNA recognition mechanism of a multisite-specific tRNA methyltransferase, Aquifex aeolicus Trm1, based on the X-ray crystal structure. J Biol Chem 286, 35236–35246.