Weakly Schreier extensions for general algebras

Author:

Manuell Graham,Martins-Ferreira Nelson

Abstract

AbstractWeakly Schreier split extensions are a reasonably large, yet well-understood class of monoid extensions, which generalise some aspects of split extensions of groups. This short note provides a way to define and study similar classes of split extensions in general algebraic structures (parameterised by a term $$\theta $$ θ ). These generalise weakly Schreier extensions of monoids, as well as general extensions of semi-abelian varieties (using the $$\theta $$ θ appearing in their syntactic characterisation). Restricting again to the case of monoids, a different choice of $$\theta $$ θ leads to a new class of monoid extensions, more general than the weakly Schreier split extensions.

Funder

Universidade de Coimbra

Publisher

Springer Science and Business Media LLC

Subject

Algebra and Number Theory

Reference19 articles.

1. Bourn, D.: Partial Mal’tsevness and partial protomodularity. arXiv:1507.02886v1 (2015)

2. Bourn, D., Janelidze, G.: Protomodularity, descent, and semidirect products. Theory Appl. Categ. 4(2), 37–46 (1998)

3. Bourn, D., Janelidze, G.: Characterization of protomodular varieties of universal algebras. Theory Appl. Categ. 11(6), 143–447 (2003)

4. Bourn, D., Martins-Ferreira, N., Montoli, A., Sobral, M.: Schreier split epimorphisms between monoids. Semigroup Forum 88(3), 739–752 (2014)

5. Bourn, D., Martins-Ferreira, N., Montoli, A., Sobral, M.: Monoids and pointed $$S$$-protomodular categories. Homol. Homotopy Appl. 18(1), 151–172 (2016)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3