Mal’tsev products of varieties, I

Author:

Penza Tomasz,Romanowska Anna B.

Abstract

AbstractWe investigate the Mal’tsev product $$\mathcal {V}\circ \mathcal {W}$$ V W of two varieties $$\mathcal {V}$$ V and $$\mathcal {W}$$ W of the same similarity type. While such a product is usually a quasivariety, it is not necessarily a variety. We give an equational base for the variety generated by $$\mathcal {V}\circ \mathcal {W}$$ V W in terms of identities satisfied in $$\mathcal {V}$$ V and $$\mathcal {W}$$ W . Then the main result provides a new sufficient condition for $$\mathcal {V}\circ \mathcal {W}$$ V W to be a variety: If $$\mathcal {W}$$ W is an idempotent variety and there are terms f(xy) and g(xy) such that $$\mathcal {W}$$ W satisfies the identity $$f(x,y) = g(x,y)$$ f ( x , y ) = g ( x , y ) and $$\mathcal {V}$$ V satisfies the identities $$f(x,y) = x$$ f ( x , y ) = x and $$g(x,y) = y$$ g ( x , y ) = y , then $$\mathcal {V}\circ \mathcal {W}$$ V W is a variety. We provide a number of examples and applications of this result.

Publisher

Springer Science and Business Media LLC

Subject

Algebra and Number Theory

Reference20 articles.

1. Bergman, C.: Joins and Maltsev products of congruence permutable varieties. Algebra Universalis 81, Paper No. 16 (2020)

2. Bergman, C.: Notes on Quasivarieties and Mal’tsev Products (2014). https://iastate.box.com/v/maltsevprods. Accessed May 2020

3. Bergman, C.: Universal Algebra. Fundamentals and Selected Topics. CRC Press, Boca Raton (2012)

4. Bergman, C., Penza, T., Romanowska, A.B.: Semilattices sums of algebras and Mal’tsev products of varieties. Algebra Universalis 81, Paper No. 33 (2020)

5. Csàkàny, B.: Congruences and subalgebras. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 18, 37–44 (1975)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mal'tsev--Neumann products of semi-simple classes of rings;Commentationes Mathematicae Universitatis Carolinae;2023-04-28

2. Mal’tsev products of varieties, II;Algebra universalis;2022-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3