Abstract
AbstractA finite semigroup is finitely related (has finite degree) if its term functions are determined by a finite set of finitary relations. For example, it is known that all nilpotent semigroups are finitely related. A nilpotent monoid is a nilpotent semigroup with adjoined identity. We show that every 4-nilpotent monoid is finitely related. We also give an example of a 5-nilpotent monoid that is not finitely related. To our knowledge, this is the first example of a finitely related semigroup where adjoining an identity yields a semigroup which is not finitely related. We also provide examples of finitely related semigroups which have subsemigroups, homomorphic images, and in particular Rees quotients, that are not finitely related.
Funder
Johannes Kepler University Linz
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献