Author:
Bodirsky Manuel,Vucaj Albert
Abstract
AbstractPrimitive positive constructions have been introduced in recent work of Barto, Opršal, and Pinsker to study the computational complexity of constraint satisfaction problems. Let $${\mathfrak {P}}_{\mathrm {fin}}$$Pfin be the poset which arises from ordering all finite relational structures by pp-constructability. This poset is infinite, but we do not know whether it is uncountable. In this article, we give a complete description of the restriction $${\mathfrak {P}}_{\mathrm {Boole}}$$PBoole of $${\mathfrak {P}}_{\mathrm {fin}}$$Pfin to relational structures on a two-element set. We use $${\mathfrak {P}}_{\mathrm {Boole}}$$PBoole to present the various complexity regimes of Boolean constraint satisfaction problems that were described by Allender, Bauland, Immerman, Schnoor and Vollmer.
Funder
Technische Universität Dresden
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Reference14 articles.
1. Allender, E., Bauland, M., Immerman, N., Schnoor, H., Vollmer, H.: The complexity of satisfiability problems: refining Schaefer’s theorem. J. Comput. Syst. Sci. 75, 245–254 (2009)
2. Barto, L., Krokhin, A., Willard, R.: Polymorphisms, and how to use them. The constraint satisfaction problem: complexity and approximability. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik 7, 1–44 (2017)
3. Barto, L., Opršal, J., Pinsker, M.: The wonderland of reflections. Israel J. Math. 223, 363–398 (2018)
4. Bodirsky, M.: Complexity classification in infinite-domain constraint satisfaction. Mémoire d’habilitation à diriger des recherches, Université Diderot–Paris 7. arXiv:1201.0856 (2012)
5. Bulatov, A.A.: H-coloring dichotomy revisited. Theor. Comput. Sci. 349, 31–39 (2005)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献