Abstract
AbstractIf F is a (not necessarily associative) monad on Set, then the natural transformation $$F(A\times B)\rightarrow F(A)\times F(B)$$F(A×B)→F(A)×F(B) is surjective if and only if $$F(\varvec{1})=\varvec{1}$$F(1)=1. Specializing F to $$F_{\mathcal {V}}$$FV, the free algebra functor for a variety $$\mathcal {V},$$V, this result generalizes and clarifies an observation by Dent, Kearnes and Szendrei in 2012.
Funder
Philipps-Universität Marburg
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Reference15 articles.
1. Chajda, I., Czédli, G., Horváth, E.: The shifting lemma and shifting lattice identities. Algebra Universalis 50, 51–60 (2003). https://doi.org/10.1007/s00012-003-1808-2
2. Dent, T., Kearnes, K.A., Szendrei, Á.: An easy test for congruence modularity. Algebra Universalis 67(4), 375–392 (2012). https://doi.org/10.1007/s00012-012-0186-z
3. Gran, M., Rodelo, D., Nguefeu, I.T.: Variations of the shifting lemma and goursat categories. Algebra Universalis 80(1) (Jan 2019). https://doi.org/10.1007/s00012-018-0575-z
4. Gumm, H.P.: Elements of the general theory of coalgebras. In: LUATCS 99. Rand Afrikaans University, Johannesburg, South Africa (1999), https://www.mathematik.uni-marburg.de/~gumm/Papers/Luatcs.pdf
5. Gumm, H.P.: Functors for coalgebras. Algebra Universalis 45, 135–147 (2001). https://doi.org/10.1007/s00012-001-8156-x
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献