An Effective Approach for Sub-acute Ischemic Stroke Lesion Segmentation by Adopting Meta-Heuristics Feature Selection Technique Along with Hybrid Naive Bayes and Sample-Weighted Random Forest Classification
Author:
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://link.springer.com/content/pdf/10.1007/s11220-019-0230-6.pdf
Reference32 articles.
1. Madhukumar, S., & Santhiyakumari, N. (2014). A Novel Segmentation and Contouring Scheme to Assist Accurate Brain Lesion Classification. Journal of Biomedical Engineering and Medical Imaging. https://doi.org/10.14738/jbemi.16.546 .
2. Fiot, J., Cohen, L., Raniga, P., & Fripp, J. (2013). Efficient brain lesion segmentation using multi-modality tissue-based feature selection and support vector machines. International Journal for Numerical Methods in Biomedical Engineering, 29(9), 905–915. https://doi.org/10.1002/cnm.2537 .
3. Rekik, I., Allassonnière, S., Carpenter, T., & Wardlaw, J. (2013). Corrigendum to “Medical image analysis methods in MR/CT-imaged acute–subacute ischemic stroke lesion: Segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal” [NeuroImage: Clinical 1 (2012) 164–178]. NeuroImage: Clinical, 2, 600. https://doi.org/10.1016/j.nicl.2013.04.013 .
4. Etgen, T., Steinich, I., & Gsottschneider, L. (2014). Thrombolysis for ischemic stroke in patients with brain tumors. Journal of Stroke and Cerebrovascular Diseases, 23(2), 361–366. https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.05.004 .
5. Huang, F. (2014). Research on Classification of Remote Sensing Image Based on SVM Including Textural Features. Applied Mechanics and Materials, 543–547, 2559–2565. https://doi.org/10.4028/www.scientific.net/amm.543-547.2559 .
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine Learning and Computer Vision Based Methods for Cancer Classification: A Systematic Review;Archives of Computational Methods in Engineering;2024-02-12
2. Hybrid classifier model for big data by leveraging map reduce framework;International Journal of Data Mining, Modelling and Management;2024
3. TumorGANet: A Transfer Learning and Generative Adversarial Network- Based Data Augmentation Model for Brain Tumor Classification;IEEE Access;2024
4. Deep learning‐based robust hybrid approaches for brain tumor classification in magnetic resonance images;International Journal of Imaging Systems and Technology;2023-10-10
5. Classification of ischemic and hemorrhagic stroke using Enhanced-CNN deep learning technique;Journal of Intelligent & Fuzzy Systems;2023-10-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3