Learned Anomaly Detection with Terahertz Radiation in Inline Process Monitoring

Author:

Meiser ClemensORCID,Wald AnneORCID,Schuster ThomasORCID

Abstract

AbstractTerahertz tomographic imaging as well as machine learning tasks represent two emerging fields in the area of nondestructive testing. Detecting outliers in measurements that are caused by defects is the main challenge in inline process monitoring. An efficient inline control enables to intervene directly during the manufacturing process and, consequently, to reduce product discard. We focus on plastics and ceramics, for which terahertz radiation is perfectly suited because of its characteristics, and propose a density based technique to automatically detect anomalies in the measured radiation data. The algorithm relies on a classification method based on machine learning. For a verification, supervised data are generated by a measuring system that approximates an inline process. The experimental results show that the use of terahertz radiation, combined with the classification algorithm, has great potential for a real inline manufacturing process. In a further investigation additional data are simulated to enlarge the data set, especially the variety of defects. We model the propagation of terahertz radiation by means of the Eikonal equation.

Funder

Allianz Industrie Forschung

Georg-August-Universität Göttingen

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3