Author:
Lou Liangshan,Lu Ke,Xue Jian
Funder
National Natural Science Foundation of China
Beijing Municipal Education Commission
Beijing Natural Science Foundation
Publisher
Springer Science and Business Media LLC
Reference38 articles.
1. Ye, J., Ito, S., & Toyama, N. (2018). Computerized ultrasonic imaging inspection: From shallow to deep learning. Sensors (Basel, Switzerland), 18(11), 3820.
2. Davì, S., Mineo, C., Macleod, C., Pierce, S. G., & Mccubbin, C. (2020). Correction of b-scan distortion for optimum ultrasonic imaging of backwalls with complex geometries. Insight-Non-Destructive Testing and Condition Monitoring, 62(4), 184–191.
3. Virkkunen, I., Koskinen, T., Jessen-Juhler, O., & Rinta-Aho, J. (2019). Augmented ultrasonic data for machine learning. abs/1903.11399.
4. Bettayeb, F., Rachedi, T., & Benbartaoui, H. (2004). An improved automated ultrasonic NDE system by wavelet and neuron networks. Ultrasonics, 42(1), 853–858.
5. Yuan, M., Li, J., Liu, Y., & Gao, X. (2020). Automatic recognition and positioning of wheel defects in ultrasonic b-scan image using artificial neural network and image processing. Journal of Testing and Evaluation, 48(1), 20180545.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献