Motion Capture Sensing Technologies and Techniques: A Sensor Agnostic Approach to Address Wearability Challenges

Author:

Haratian RoyaORCID

Abstract

AbstractBody area sensing systems specifically designed for motion capture need to consider the wearer’s comfort and wearability criteria. In this paper, after studying body models and their approximation by link-segment models, the kinematics and inverse kinematics problems for determining motion are explored. Different sensor technologies and related motion capture systems are then discussed within the context of wearability and portability challenges of the systems. For such systems, the weight and size of the system need to be kept small and the system should not interfere with the user’s movements. The requirements will be considered in terms of portability: portable motion capture systems should be less sensitive in accurate positioning of sensors and have more battery lifetime or less power consumption for their wider adoption as an assisted rehabilitation platform. Therefore, a proposed signal processing technique is validated in a controlled setting to address the challenges. By reducing sampling frequency, the power consumption will be reduced but there would be more variability in data whereas by utilising an adaptive filtering approach the variation can be compensated for. It is shown how by using the technique it is possible to reduce the energy consumption; therefore, the potential to decrease the battery size leading to a less bulky on-body sensing system with more comfort to the wearer.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3