Biological activities and ecological aspects of Limonium pruinosum (L.) collected from Wadi Hof Eastern Desert, Egypt, as a promising attempt for potential medical applications

Author:

Sultan Mahmoud H.,Bedair Ramadan,Ragab Osama G.,Abd-ELShafy Eman,Mahfouz Amira Y.ORCID,Daigham Ghadir E.

Abstract

Abstract Very few researchers have focused on the biological efficacy of Limonium plants. In this concern, no investigations were commenced to delve into the in vitro and ex vivo biological actions of Limonium pruinosum in Egypt. Therefore, this work aims to assess for the first time the antimicrobial, antioxidant, and antitumor activities of Limonium pruinosum extract in addition to studying its ability to suppress the transcription of cell cycle–stimulating genes. L. pruinosum ethyl acetate extract exhibits considerable antibacterial and antibiofilm activity versus E. coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Results revealed that L. pruinosum exerts antioxidant effectiveness concerning DPPH, nitric oxide (NO), and hydroxyl radical (OH) scavenging ability with an IC50 (35.88 ± 2.2, 51.31 ± 1.06, and 65.87 ± 1.19 μg/mL) respectively. The results proved the effectiveness of L. pruinosum in closing wounds in gastric epithelial cells (GES-1) by (79.9343 ± 1.98%) compared with control (68.3637 ± 2.32%) in 48 h. Additionally, L. pruinosum had anticancer activity contrary to breast cancer MCF-7 and liver cancer HepG-2 cell lines with IC50 values of 96.73 ± 2.18 and 81.81 ± 0.99 μg/mL, respectively, while it had no cytotoxic activity against (Wi-38) normal cells. Also, L. pruinosum extract provoked considerable early- and late-apoptotic cell populations and was effective in inducing cell death of MCF-7. Our findings evoked that L. pruinosum has promising antibacterial, antioxidant, and wound healing activities and a good breast tumor suppressor arresting the cell cycle-stimulating genes, which may be an auspicious approach for the treatment of breast cancer.

Funder

Al-Azhar University

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3