Adsorptive removal of siloxanes from biogas: recent advances in catalyst reusability and water content effect

Author:

Vali Seyed AlirezaORCID,Moral-Vico JavierORCID,Font XavierORCID,Sánchez AntoniORCID

Abstract

AbstractThe valorization of biogas as a renewable energy source faces a major obstacle regarding its purification. Siloxane is one of the impurities that cause problems such as damages to equipment of combustion engines, turbines, and boilers used for biogas conversion to heat and electricity. In this review, adsorption for siloxane removal is widely discussed, with two specific approaches: adsorbents sensitivity to water and regeneration, two essential points for industrial application. Thus, determining factors in adsorbents capacity, reusability, and water tolerance including textural properties, surface functional groups, and hydrophobicity are deeply analyzed. Studies oriented to the optimization of traditional adsorbents such as activated carbon, silica gel, and aluminosilicates as well as newly emerging adsorbents such as metal organic frameworks, graphene oxides, and waste-derived materials are studied in detail in terms of reusability and water tolerance. Although activated carbon is commercially used, its low selectivity, pore blockage due to siloxane polymerization, and unsuccessful regeneration make it disadvantageous. Silica gel, however, shows better reusability as a result of less adsorbent-adsorbate dissociation energy. In addition, aluminosilicates, despite its low adsorption capacity, proved to be more practical for real biogas due to their high hydrophobicity. Graphene oxide cost and energy efficiency in their synthesis make them more industrially appealing candidates despite their low adsorption capacity. Finally, metal organic frameworks demonstrated high selectivity, high adsorption capacity, and more efficient regeneration and therefore have more advantages and less drawbacks, although the number of published studies is still limited.

Funder

Universitat Autònoma de Barcelona

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3