Reaction microkinetic model of xylose dehydration to furfural over beta zeolite catalyst

Author:

Rakić Emilija,Kostyniuk AndriiORCID,Nikačević Nikola,Likozar Blaž

Abstract

AbstractIn recent decades, there has been a growing interest in bio-refineries as a crucial element in transitioning to a low-carbon economy. One specific aspect of this interest is the conversion of carbohydrates into separate platform chemicals, such as furfural (FUR), which play a significant functional role in various daily life processes. This research paper focuses on investigating the use of a H-beta catalyst with SiO2/Al2O3 = 28 for producing furfural from xylose in water. Various conditions, such as temperature and initial solution concentration, are studied to determine their effect on FUR yield. The highest FUR yield (40 mol.%) is obtained when FUR is the only product species. We also report that about 90% yield from reaction with fresh catalyst can be achieved after catalyst regeneration. The activation energies for the reaction on the catalyst surface are found to be in the range of 38–75 kJ/mol. A mathematical kinetic model with three irreversible steps is derived to estimate the reaction sequence at 160, 180, and 200 °C. The model takes into account mechanisms such as adsorption, desorption, and transport (internal or external). Our results suggest that the H-beta catalyst shows high activity toward FUR yield and could be a promising alternative for mass-scale production of the latter.

Funder

HORIZON EUROPE Framework Programme

Javna Agencija za Raziskovalno Dejavnost RS

Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3