Abstract
AbstractIn recent decades, there has been a growing interest in bio-refineries as a crucial element in transitioning to a low-carbon economy. One specific aspect of this interest is the conversion of carbohydrates into separate platform chemicals, such as furfural (FUR), which play a significant functional role in various daily life processes. This research paper focuses on investigating the use of a H-beta catalyst with SiO2/Al2O3 = 28 for producing furfural from xylose in water. Various conditions, such as temperature and initial solution concentration, are studied to determine their effect on FUR yield. The highest FUR yield (40 mol.%) is obtained when FUR is the only product species. We also report that about 90% yield from reaction with fresh catalyst can be achieved after catalyst regeneration. The activation energies for the reaction on the catalyst surface are found to be in the range of 38–75 kJ/mol. A mathematical kinetic model with three irreversible steps is derived to estimate the reaction sequence at 160, 180, and 200 °C. The model takes into account mechanisms such as adsorption, desorption, and transport (internal or external). Our results suggest that the H-beta catalyst shows high activity toward FUR yield and could be a promising alternative for mass-scale production of the latter.
Funder
HORIZON EUROPE Framework Programme
Javna Agencija za Raziskovalno Dejavnost RS
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献